Eesti maapõue teavikute register

Veebirakendus valmib 2020. a lõpuks, seni saab kasutada portaali osalist funktsionaalsust.


Infot Eesti geoloogia ja maavarade kohta leiab inglisekeelsest raamatust Raukas & Teedumäe (eds), 1997: Geology and Mineral Resources of Estonia

Kirjanduse otsing ...

Lihtpäring otsib infot kõigilt kirjanduse andmeväljadelt: autor, aasta, pealkiri, ajakirja nimi, kogumik, abstrakt, märksõnad, doi jne.

(1) otsida saab ühe või mitme sõna järgi, tulemustes kuvatakse kirjed, kus vähemalt üks neist on olemas (nt Kaljo Kivimägi);
(2) kui lisad märksõna ette "+" märgi, siis otsitakse vaid kirjeid, kus see märksõna sisaldub (nt +Kaljo +Kivimägi);
(3) märksõna välistamiseks kasuta "-" märki (nt -Kaljo +Kivimägi);
(4) pimeotsingu tähiseks on * (nt litostrat*);
(5) kindla fraasi otsinguks ümbritse see jutumärkidega (nt "tartu riikliku ülikooli");
(6) kombineeri eelnevaid võimalusi (nt +"estonian journal of earth sciences" +Kaljo +year:[2010 TO *] annab tulemuseks kõik Dimitri Kaljo artiklid ajakirjas EJES);

Täiendavad filtrid:
Autor: Aasta: Pealkiri:


NB! Otsingutulemuste hulgas kuvatakse vaikimisi vaid kontrollitud kirjeid, mis on otseselt seotud Eestiga. Näita kõiki publikatsioone.

Detailsem päringuvorm valmib 2020. a teises pooles. Andmete sisestamine ja märksõnadega varustamine kestab 2020. a lõpuni ning seda finantseerib KIKi projekt "Eesti maapõue trükiste andmebaas".

Virtuaalne kirjanduse kogumik

Mikroobpindade struktuurid

Koostas(id): , 2019

Kogumiku kirjandus (123)

Arp, G., Reimer, A., Reitner, J., 2001: Photosynthesis-induced biofilm calcification and calcium concentration in Phanerozoic oceans. Science, 292, 5522, 1701–1704. https://doi.org/10.1126/science.1057204

Astin, T. R., Rogers, D. A., 1991: "Subaqueous shrinkage cracks" in the Devonian of Scotland reinterpreted. Journal of Sedimentary Research, . https://doi.org/10.2110/jsr.61.850

Bailey, J. V., Corsetti, F. A., Bottjer, D. J., Marenco, K. N., 2006: Microbially-Mediated Environmental Influences on Metazoan Colonization of Matground Ecosystems: Evidence from the Lower Cambrian Harkless Formation. Palaios, 21, 3, 215-226. https://doi.org/10.2110/palo.2005-p05-51e

Banerjee, S., Sarkar, S., Eriksson, P. G., Samanta, P., 2010: Microbially Related Structures in Siliciclastic Sediment Resembling Ediacaran Fossils: Examples from India, Ancient and Modern. In: Secbach, J., Oren, A. (ed.). Microbial Mats. Modern and Ancient Microorganisms in Stratified Systems. Springer Netherlands, Dordrecht, p. 109-129. https://doi.org/10.1007/978-90-481-3799-2_6

Baucon, A., Neto de Carvalho, C., Felletti, F., Cabella, R., 2020: Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars. Geosciences, 10, 2, 39. https://doi.org/10.3390/geosciences10020039

Bayley, J. V., Corsetti, F. A., Bottjer, D. J., Marenco, K. N., 2006: Microbially-Mediated Environmental Influences on Metazoan Colonization of Matground Ecosystems: Evidence from the Lower Cambrian Harkless Formation. Palaios, 21, 3, 215-226. https://doi.org/10.2110/palo.2005-p05-51e

Blumenberg, M., Thiel, V., Reitner, J., 2015: Organic matter preservation in the carbonate matrix of a recent microbial mat – Is there a ‘mat seal effect’?. Organic Geochemistry, 87, 25-34. https://doi.org/10.1016/j.orggeochem.2015.07.005

Bose, S., Chafetz, H. S., 2012: Morphology and Distribution of Miss: A Comparison Between Modern Siliciclastic and Carbonate Settings. SEPM Special Publications, 110. Microbial mats in Siliciclastic Depositional System Through Time. Noffke, N. & Chafets, H. (Eds.), p. 1-14. https://doi.org/10.2110/sepmsp.101.003

Bottjer, D. J., Hagadorn, J. W., 2007: Mat growth features. In: Schieber, J., Bose, P. K., Ericksson, P. GBanerjee, S., Sarkar, S., Altermann, W., Catuneanu, O. (ed.). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Elsevier, Amsterdam, p. 53-71.

Bottjer, D. J., Hagadorn, J. W., Dornbos, S. Q., 2000: The Cambrian substrate revolution. GSA Today, 10, 9, 1-8.

Bouougri, E. H., Porada, H., 2007: Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences, 48, 1, 38-48. https://doi.org/10.1016/j.jafrearsci.2007.03.004

Bouougri, E. H., Porada, H., 2012: Wind-induced mat deformation structures in recent tidal flats and sabkhas of SE-Tunisia and their significance for environmental interpretation of fossil structures. Sedimentary Geology, 263-264, 56-66. https://doi.org/10.1016/j.sedgeo.2011.12.011

Bouougri, E., Porada, H., 2002: Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco). Sedimentary Geology, 153, 3-4, 85-106. https://doi.org/10.1016/S0037-0738(02)00103-3

Brunton, F. R., Dixon, O. A., 1994: Siliceous Sponge-Microbe Biotic Associations and Their Recurrence through the Phanerozoic as Reef Mound Constructors. Palaios, 9, 4, 370-387. https://doi.org/10.2307/3515056

Buatois, L. A., Mangano, M. G., 2003: Early Colonization of the Deep Sea: Ichnologic Evidence of Deep-marine Benthic Ecology from the Early Cambrian of Northwest Argentina. Palaios, 18, 6, 572-581. https://doi.org/10.1669/0883-1351(2003)018<0572:ECOTDS>2.0.CO;2

Buatois, L. A., Mángano, M. G., 2004: Terminal Proterozoic-Early Cambrian ecosystems: Ichnology of the Puncoviscana Formation, northwest Argentina. In: Webby, B. D., Mángano, M. G., Buatois, L. A. (ed.). Trace Fossils in Evolutionary Palaeoecology. Fossils and Strata, 51, p. 1-16.

Buatois, L. A., Mángano, M. G., 2016: Ediacaran Ecosystems and the Dawn of Animals. In: Mángano, M. G., Buatois, L. A. (ed.). The Trace-Fossil Record of Major Evolutionary Events. Vol. 1: Precambrian and Paleozoic, 39. Springer Netherlands, Dordrecht, p. 27-72. https://doi.org/10.1007/978-94-017-9600-2_2

Buatois, L. A., Mángano, M. G., Brussa, E. D., Benedetto, J. L., Pompei, J. F., 2009: The changing face of the deep: Colonization of the Early Ordovician deep-sea floor, Puna, northwest Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 3-4, 291-299. https://doi.org/10.1016/j.palaeo.2009.06.014

Buatois, L. A., Narbonne, G. M., Mángano, M. G., Carmona, N. B., Myrow, P., 2014: Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications, 5, 1, 1-5. https://doi.org/10.1038/ncomms4544

Buatois, L. A., Netto, R. G., Mángano, M. G., Carmona, N. B., 2013: Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana. Geobiology, 11, 4, 307-317. https://doi.org/10.1111/gbi.12038

Callow, R. H. T., Brasier, M. D., 2009: Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews, 96, 3, 207–219. https://doi.org/10.1016/j.earscirev.2009.07.002

Calner, M., Eriksson, M.E., 2012: The Record of Microbially Induced Sedimentary Structures (MISS) in the Swedish Paleozoic. In: Noffke, N., Chafetz, H. (ed.). Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publications, 101. SEPM (Society for Sedimentary Geology), p. 29-35. https://doi.org/10.2110/sepmsp.101.029

Cameron, B., Cameron, D., Jones, J. R., 1985: Modern Algal Mats in Intertidal and Supratidal Quartz Sands, Northeastern Massachusetts, U.S.A.. In: Curran, A. H. (ed.). Biogenic Structures: Their Use in Interpreting Depositional Environments. SEPM (Society for Sedimentary Geology), p. 211-223. https://doi.org/10.2110/pec.85.35.0211

Carmona, N. B., Ponce, J. J., Wetzel, A., Bournod, C. N., Cuadrado, D. G., 2012: Microbially induced sedimentary structures in Neogene tidal flats from Argentina: Paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353-355, 1-9. https://doi.org/10.1016/j.palaeo.2012.06.021

Ciampaglio, C., Babcock, L. E., Wellmann, C. L., York, A. R., Brunswick, H. K., 2006: Phylogenetic affinities and taphonomy of Brooksella from the Cambrian of Georgia and Alabama, USA. Palaeoworld, 15, 3-4, 256-265. https://doi.org/10.1016/j.palwor.2006.10.002

Cuadrado, D. G., Carmona, N. B., Bournod, C., 2011: Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahia Blanca estuary (Argentina). Sedimentary Geology, 237, 1-2, 95-101. https://doi.org/10.1016/j.sedgeo.2011.02.008

Cuadrado, D. G., Carmona, N. B., Bournod, C. N., 2012: Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats. Sedimentary Geology, 271-271, 58–66. https://doi.org/10.1016/j.sedgeo.2012.06.005

Davies, N. S., Liu, A. G.., Gibling, M. R., Miller, R. F., 2016: Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews, 154, 210-246. https://doi.org/10.1016/j.earscirev.2016.01.005

Davies, N., Liu, A. G., Gibling, M., Miller, R., 2018: Reply to comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth Science Reviews, 154 (2016), 210–246). Earth-Science Reviews, 176, 384-386. https://doi.org/10.1016/j.earscirev.2017.11.024

Decho, A. D., 2000: Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 10-11, 1257–1273. https://doi.org/10.1016/S0278-4343(00)00022-4

Decho, A. W., 2009: Overview of biopolymer-induced mineralization: what goes on in biofilms?. Ecological Engineering, 36, 137-144. https://doi.org/10.1016/j.ecoleng.2009.01.003

Decho, A. W., Visscher, P. T., Reid, R. P., 2005: Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 1-2, 71-86. https://doi.org/10.1016/j.palaeo.2004.10.015

Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., 2004: Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of Southwest China. Lethaia, 37, 2, 127-137. https://doi.org/10.1080/00241160410004764

Droser, M. L., Tarhan, L. G., Gehling, J. G., 2017: The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran. Annual Review of Earth and Planetary Sciences, 45, 1, 593-617. https://doi.org/10.1146/annurev-earth-063016-015645

Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., Visscher, P. T., 2009: Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 3, 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005

Dupraz, C., Visscher, P. T., 2005: Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 9, 429-438. https://doi.org/10.1016/j.tim.2005.07.008

Dupraz, C., Visscher, P. T., Baumgartner, L. K., Reid, R. P., 2004: Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 4, 745-765. https://doi.org/10.1111/j.1365-3091.2004.00649.x

Eriksson, P. G., Porada, H., Banerjee, S., Bouougri, S, Sarkar, S., Bumby, A. J., 2007: Mat destruction features. In: Schieber, J., Bose, P. K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneau, O. (ed.). Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam.

Eriksson, P. G., Sarkar, S., Samanta, P., Banerjee, S., Porada, H., Catuneanu, O., 2010: Paleoenvironmental Context of Microbial Mat-Related Structures in Siliciclastic Rocks. In: Secbach, J., Oren, A. (ed.). Microbial Mats. Modern and Ancient Microorganisms in Stratified Systems. Springer, Dordrecht, p. 71-108. https://doi.org/10.1007/978-90-481-3799-2_5

Evans, S. D., Gehling, J. G., Droser, M. L., 2019: Slime travelers: Early evidence of animal mobility and feeding in an organic mat world. Geobiology, 17, 5, 490-509. https://doi.org/10.1111/gbi.12351

Feng, X., Chen, Z.-Q., Bottjer, D. J., Wu, S., Zhao, L., Xu, Y., Shi, G.R., Huang, Y., Fang Y., Tu. C., 2019: Unusual shallow marine matground-adapted benthic biofacies from the Lower Triassic of the northern Paleotethys: Implications for biotic recovery following the end-Permian mass extinction. Earth-Science Reviews, 189, 194-219. https://doi.org/10.1016/j.earscirev.2018.07.012

Fernández, D. E., Pazos, P. J., 2013: Xiphosurid trackways in a Lower Cretaceous tidal flat in Patagonia: palaeoecological implications and the involvement of microbial mats in trace-fossil preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 16-29. https://doi.org/10.1016/j.palaeo.2013.02.008

Friedmann, E., Weed, R., 1987: Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science, 236, 4802, 703-705. https://doi.org/10.1126/science.11536571

Gehling, J. G., 1999: Microbial Mats in Terminal Proterozoic Siliciclastics: Ediacaran Death Masks. Palaios, 14, 1, 40-57. https://doi.org/10.2307/3515360

Gerdes, G., 2010: What are Microbial Mats?. In: Secbach, J., Oren, A. (ed.). Microbial Mats. Modern and Ancient Microorganisms in Stratified Systems. Springer, Dordrecht, p. 3-25. https://doi.org/10.1007/978-90-481-3799-2_1

Gerdes, G., Wehrmann, A., 2008: Biofilms in surface sediments of the ephemeral sand bank island Kachelotplate (southern North Sea). Senckenbergiana Maritima, 38, 2, 173-183. https://doi.org/10.1007/BF03055294

Gingras, M. K., Waldron, J. W., White, C. E., Barr, S. M., 2011: The evolutionary significance of a Lower Cambrian trace-fossil assemblage from the Meguma terrane, Nova Scotia. Canadian Journal of Earth Sciences, 48, 1, 71-85. https://doi.org/DOI: 10.1139/E10-086

Gingras, M., Hagadorn, J. W., Seilacher, A., Lalonde, S. V., Pecoits, E., Petrash, D., Konhauser, K. O., 2011: Possible evolution of mobile animals in association with microbial mats. Nature Geoscience, 4, 6, 372-375. https://doi.org/10.1038/NGEO1142

Glaessner, M. F., 1969: Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2, 4, 369-393. https://doi.org/10.1111/j.1502-3931.1969.tb01258.x

Gougeon, R., Néraudeau, D., Dabard, M., Pierson-Wickmann, A., Polette, F., Poujol, M., Saint-Martin, J., 2018: Trace Fossils from the Brioverian (Ediacaran–Fortunian) in Brittany (NW France). Ichnos, 25, 1, 11-24. https://doi.org/10.1080/10420940.2017.1308865

Grazhdankin, D., 2004: Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30, 2, 203-221. https://doi.org/10.1666/0094-8373(2004)030<0203:PODITE>2.0.CO;2

Haddad, E. E., Boyer, D. L., Droser, M. L., Lee, B. K., Lyons, T. W., Love, G. D., 2018: Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 178-190. https://doi.org/10.1016/j.palaeo.2017.10.025

Hagadorn, J. W., Bottjer, D. J., 1997: Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25, 11, 1047. https://doi.org/10.1130/0091-7613(1997)025<1047:WSMMSS>2.3.CO;2

Hagadorn, J.W., Bottjer, D.J., 1999: Restriction of a Late Neoproterozoic Biotope: Suspect-Microbial Structures and Trace Fossils at the Vendian-Cambrian Transition. Palaios, 14, 1, 73-85. https://doi.org/10.2307/3515362

Harazim, D., Callow, R. H. T., Mcilroy, D., 2013: Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks. Sedimentology, 60, 7, 1621-1638. https://doi.org/10.1111/sed.12044

Hickman-Lewis, K., Westall, F., Cavalazzi, B., 2019: Traces of Early Life From the Barberton Greenstone Belt, South Africa. In: Kranendonk, M. van, Bennett V., Hoffmann, E. (ed.). Earth's Oldest Rocks, 2nd Edition. Elsevier, p. 1029-1058. https://doi.org/10.1016/B978-0-444-63901-1.00042-3

Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., Parsons, D. R., Manning, A. J., Bass, S. J., Lichtman, I. D., Thorne, P. D., Ye, L., Paterson, D. M., 2020: Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography, . https://doi.org/10.1002/lno.11461

Jayathilake, P. G., Jana, S., Rushton, S., Swailes, D., Bridgens, B., Curtis, T., Chen, J., 2017: Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms. Frontiers in Microbiology, 8, 1, 1-13. https://doi.org/10.3389/fmicb.2017.01865

Jensen, S., Harper, D. A., Stouge, S., 2016: Trace fossils from the lower Cambrian Kløftelv Formation, Ella Ø, North-East Greenland. GFF, 138, 3, 369-376. https://doi.org/10.1080/11035897.2015.1076029

Jensen, S., Neto de Carvalho, C., Palacios, T., 2016: Trace fossils from the Barrancos and Colorada formations, Ordovician, Ossa-Morena Zone, Portugal and Spain. Comunicações Geológicas, 103, 159-168.

Knaust, D., 2015: Grazing traces (Kimberichnus teruzzii) on Middle Triassic microbial matground. ICHNOLOGY: Papers from ICHNIA III: Geological Association of Canada, Miscellaneous Publication 9,( McIlroy, D., ed.), p. 15-125..

Kues, B. S., Siemers, C. T., 1977: Control of mudcrack patterns by the infaunal bivalve Pseudocyrena. Journal of Sedimentary Petrology, 47, 2, 844–848. https://doi.org/10.1306/212F726B-2B24-11D7-8648000102C1865D

Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., Briggs, D. E. G., 2011: Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44, 2, 203-213. https://doi.org/10.1111/j.1502-3931.2010.00235.x

Lappin-Scott, H., Burton, S., Stoodley, P., 2014: Revealing a world of biofilms — the pioneering research of Bill Costerton. Nature Reviews Microbiology, 12, 11, 1-7. https://doi.org/10.1038/nrmicro3343

Mángano, M. G., Bromley, R. G., Harper, D. A. T., Nielsen, A. T., Smith, M. P., Vinther, J., 2012: Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): Opening a new window into early Phanerozoic benthic ecology. Geology, 40, 6, 519-522. https://doi.org/10.1130/G32853.1

Mángano, M. G., Buatois, L. A., Astini, R., Rindsberg, A. K., 2014: Trilobites in early Cambrian tidal flats and the landward expansion of the Cambrian explosion. Geology, 42, 2, 143-146. https://doi.org/10.1130/G34980.1

Maslov, A.,V., Grazhdankin, D. V., Dub, S. A., Melnik, D. S., Parfenova, T. M., Kolesnikov, A. V., Cherednichenko, N. V., Kiseleva, D. V., 2019: Sedimentology and geochemistry of the Uk Formation, Upper Riphean, South Urals. Litosfera, 19, 5, 659-686.

Mason, T. R., 1980: Formation and Diagenesis of Visean Trace Fossils from Ireland. Lethaia, 13, 3, 229–237. https://doi.org/10.1111/j.1502-3931.1980.tb00636.x

Mata, S. A., Bottjer, D. J., 2011: Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: Ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 1-4, 158-178. https://doi.org/10.1016/j.palaeo.2010.12.022

Mata, S. A.. Bottjer, D. J., 2009: The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Science Reviews, 96, 3, 181-195. https://doi.org/10.1016/j.earscirev.2009.06.001

McIlroy, D., Brasier, M. D., Lang, A. S., 2009: Smothering of microbial mats by macrobiota: Implications for the Ediacara biota. Journal of the Geological Society, 166, 6, 1117-1121. https://doi.org/10.1144/0016-76492009-073

McIlroy, D., Crimes, T. P., Pauley, J. C., 2005: Fossils and matgrounds from the Neoproterozoic Longmyndian Suopergroup, Shropshire, UK. Geological Magazine, 142, 441–455. https://doi.org/10.1017/S0016756805000555

McMahon, S., van Smeerdijk Hood, A., McIlroy, D., 2017: The origin and occurrence of subaqueous sedimentary cracks. In: Brasier, A.T., McIlroy, D., McLoughlin, N. (ed.). Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier. Geological Society, London, Special Publications, 448. Geological Society of London, p. 285-309. https://doi.org/10.1144/SP448.15

Menon, L. R., McIlroy, D., Liu, A. G., Brasier, M. D., 2015: The dynamic influence of microbial mats o sediments: fluid escape and pseudofossil formation in the Ediacaran Longmyndian Supergroup, UK. Journal of the Geological Society, 173, 1, 177–185. https://doi.org/10.1144/jgs2015-036

Menon, L. R., McIlroy, D., Liu, A. G., Brasier, M. D., 2016: The dynamic influence of microbial mats on sediments: fluid escape and pseudofossil formation in the Ediacaran Longmyndian Supergroup, UK. Journal of the Geological Society, 173, 1, 177-185. https://doi.org/10.1144/jgs2015-036

Meyer, M., Xiao, S., Gill, B. C., Schiffbauer, J. D., Chen, Z., Zhou, C., Yuan, X., 2014: Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396, 62-74. https://doi.org/10.1016/j.palaeo.2013.12.026

Nelson, L. L., Smith, E. F., 2019: Tubey or not tubey: Death beds of Ediacaran macrofossils or microbially induced sedimentary structures?. Geology, 47, 10, 909-913. https://doi.org/10.1130/G46473.1

Neto de Carvalho, C., 2006: Roller coaster behavior in the Cruziana rugosa Group from Penha Garcia (Portugal): implications for the feeding program of trilobites. Ichnos, 13, 4, 255-265. https://doi.org/10.1080/10420940600843740

Noffke N., Beukes N., Gutzmer J., Hazen R., 2006: Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa . Precambrian Research, 146, 1-2, 35–44. https://doi.org/10.1016/j.precamres.2006.01.003

Noffke, N., 2018: Comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth Science Reviews, 154 (2016), 210–246). Earth-Science Reviews, 176, 373-383. https://doi.org/10.1016/j.earscirev.2017.11.021

Noffke, N., Beukes, N., Bower, D., Hazen, R. &, Swift, D. J. P., 2008: An actualistic perspective into Archean worlds—(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 6, 1, 5-20. https://doi.org/10.1111/j.1472-4669.2007.00118.x

Noffke, N., Chafetz, H., 2012: Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publications, 101, Tulsa, p. 1-198.

O'Neil, G. R., Tackett, L. S., Meyer, M., 2020: Petrographic evidence for ediacaran microbial mat-targeted behaviors from the great basin, United States. Precambrian Research, 345, 105768. https://doi.org/10.1016/j.precamres.2020.105768

Palinska, K. A., Scholz, J., Sterflinger, K., Gerdes, G., Bone, Y., 1999: Microbial mats associated with bryozoans (Coorong Lagoon, South Australia). Facies, 41, p. 1-14. https://doi.org/10.1007/BF02537456

Pandey, S. K., Sharma, M., 2017: Enigmatic Ediacaran megascopic bedding plane structures on the Sonia Sandstone, Jodhpur Group, Marwar Supergroup, India: seaweed or problematica?. Geological Journal, 52, 5, 784-807. https://doi.org/10.1002/gj.2840

Pawłowska, A. M., Butterfield, N. J., Brocks, J. J., 2013: Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology, 41, 2, 103-106. https://doi.org/10.1130/G33525.1

Payandi-Rolland, D., Roche, A., Vennin, E., Visscher, P. T., Amiotte-Suchet, P., Thomas, C., Bundeleva, I. A., 2019: Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa. Minerals, 9, 7, 409(1-23). https://doi.org/10.3390/min9070409

Pazos, P. J., Gutiérrez, C., Fernández, D. E., Heredia, A. M., Comerio, M., 2015: The unusual record of Nereites, wrinkle marks and undermat mining trace fossils from the late Silurian–earliest Devonian of central-western margin of Gondwana (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 4-16. https://doi.org/10.1016/j.palaeo.2015.05.005

Pazos, P. J., Heredia, A. M., Fernández, D. E., Gutiérres, C., Comerio, M., 2015: The ichnogenus Dictyodora from late Silurian deposits of central-western Argentina: Ichnotaxonomy, ethology and ichnostratigrapical perspectives from Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 27-37. https://doi.org/10.1016/j.palaeo.2015.02.008

Pontén, A., Plink-Björklund, P., 2007: Depositional environments in an extensive tide-influenced delta plain, Middle Devonian Gauja Formation, Devonian Baltic Basin. Sedimentology, 54, 5, 969-1006. https://doi.org/10.1111/j.1365-3091.2007.00869.x

Porada, H., Bouougri, E. H., 2007: Wrinkle structures—a critical review. Earth-Science Reviews, 81, 3-4, 199-215. https://doi.org/10.1016/j.earscirev.2006.12.001

Porada, H., Ghergut, J., Bouougri, E. H., 2008: Kinneyia-Type Wrinkle Structures—Critical Review And Model Of Formation. Palaios, 23, 2, 65-77. https://doi.org/10.2110/palo.2006.p06-095r

Prieto-Barajas, C.M., Valencia-Cantero, E., Santoyo, G., 2018: Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. Electronic Journal of Biotechnology, 31, 48-56. https://doi.org/10.1016/j.ejbt.2017.11.001

Retallack, J., 2012: Criteria for Distinguishing Microbial Mats and Earths. Microbial mats in Siliciclastic Depositional System Through Time. Noffke, N. & Chafets, H. (Eds.). SEPM Special Publications, 101. https://doi.org/10.2110/sepmsp.101.139

Riding, R., Liang, L., 2005: Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 1-2, 101-115. https://doi.org/10.1016/j.palaeo.2004.11.018

Rozhnov, S., 2019: The onset of the Ordovician evolutionary radiation of benthic animals in the Baltic Region: Explosive diversity of attachment structures of stalked echinoderms, substrate revolution and the role of cyanobacterial communities. Palaeoworld, 28, 1-2, 110-122. https://doi.org/10.1016/j.palwor.2018.05.001

Rozhnov, S. V., 2017: Cyanobacterial origin and morphology of the volkhov hardgrounds (Dapingian, Middle Ordovician) of the St. Petersburg region (Russia). Bolletino della Societa Paleontologica Italiana, 56, 2, 153-160. https://doi.org/10.4435/BSPI.2017.18

Rozhnov, S. V., 2018: Hardgrounds of the Ordovician Baltic Paleobasin as a Distinct Type of Sedimentation Induced by Cyanobacterial Mats. Paleontological Journal, 52, 10, 1098-1113. https://doi.org/10.1134/S0031030118100118

Sarkar, S., Banerjee, S., Chakraborty, P. P., 2020: Microbial Mat Structures and role of microbes in Precambrian siliciclastic sedimentation: Evidence from Indian Proterozoic basins. Episodes, 43, 1, 164-174. https://doi.org/10.18814/epiiugs/2020/020010

Sarkar, S., Choudhuri, A., Mandal, S., Eriksson, P. G., 2016: Microbial mat-related structures shared by both siliciclastic and carbonate formations. Journal of Palaeogeography, 5, 5, . https://doi.org/10.1016/j.jop.2016.05.001

Scott, J. J., Buatois, L. A., Mángano, M. G., Renaut, R. W., Owen, R. B., 2019: Bioturbation in matgrounds at Lake Bogoria in the Kenya Rift Valley: implications for interpreting the heterogeneous early Cambrian seafloor. Lethaia, . https://doi.org/10.1111/let.12336

Seilacher, A., 1999: Biomat-Related Lifestyles in the Precambrian. Palaios, 14, 1, 86. https://doi.org/10.2307/3515363

Seilacher, A., Buatois, L. A., Mángano, M. G., 2005: Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 4, 323-356. https://doi.org/10.1016/j.palaeo.2005.06.003

Seilacher, A., Reif, W., Westphal, F., Riding, R., Clarkson, E. N. K., Whittington, H. B., 1985: Sedimentological, ecological and temporal patterns of lossil Lagerstätten. Philosophical Transactions of the Royal Society B, 311, 1148, 5-24. https://doi.org/10.1098/rstb.1985.0134

Shillito, A. P., Davies, N. S., 2020: The Tumblagooda Sandstone revisited: exceptionally abundant trace fossils and geological outcrop provide a window onto Palaeozoic littoral habitats before invertebrate terrestrialization. Geological Magazine, 1-32. https://doi.org/10.1017/S0016756820000199

Shiraishi, F., Hanzawa, Y., Okumura, T., Tomioka, N., Kodama, Y., Suga, H., Takahashi, Y., Kano, A., 2017: Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics. Scientific Reports, 7, 1, . https://doi.org/10.1038/s41598-017-12303-9

Soldatenko, Y., El Albani, A., Fontaine, C., Nesterovsky, V. A., Ruzina, M. V., 2019: Neoproterozoic microbially-induced sedimentary structures (MISS) from Ediacaran Podillya Basin, Ukraine: mineralogical particularity and paleoenvironmental application. Journal of Geology, Geography and Geoecology, 28, 3, 554-561. https://doi.org/10.15421/111952

Steiner, M., Reitner, J., 2001: Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29, 12, 1119. https://doi.org/10.1130/0091-7613(2001)029<1119:EOOSIE>2.0.CO;2

Stimson, M. R., Miller, R. F., MacRae, R. A., Hinds, S. J., 2017: An Ichnotaxonomic Approach to Wrinkled Microbially Induced Sedimentary Structures. Ichnos, 24, 4, 291-316. https://doi.org/10.1080/10420940.2017.1294590

Stoodley, P., Lewandowski, Z., Boyle, J. D., Lappin-Scott, H. M., 1999: The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environmental Microbiology, 1, 5, 447-455. https://doi.org/10.1046/j.1462-2920.1999.00055.x

Tarhan, L. G., Droser, M. L., Gehling, J. G., Dzaugis, M. P., 2017: Microbial mat sandwiches and other anactualistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia): Implications for interpretation of the Ediacaran sedimentary record. Palaios, 32, 3, 181-194. https://doi.org/10.2110/palo.2016.060

Thomas, K., Herminghaus, S., Porada, H., Goehring, L., 2013: Formation of Kinneyia via shear-induced instabilities in microbial mats. Philosophical Transactions of the Royal Society A , 371, 2004, 1-19. https://doi.org/10.1098/rsta.2012.0362

Tice, M. M., Thornton, D. C. O., Pope, M. C., Olszewsku, T. D., Gong, J., 2011: Archean microbial mat communities. Annual Review of Earth and Planetary Sciences, 39, 297-319. https://doi.org/10.1146/annurev-earth-040809-152356

Tolmacheva, T., Fedorov, P., Egerquist, E., 2003: Conodonts and brachiopods from the Volkhov Stage (Lower Ordovician) microbial mud mound at Putilovo Quarry, north-western Russia. Bulletin of the Geological Society of Denmark, 50, 63-74.

Uchman, A., Martyshyn, A., 2020: Taxis behaviour of burrowing organisms recorded in an Ediacaran trace fossil from Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109441. https://doi.org/10.1016/j.palaeo.2019.109441

Vasconcelos, C., Warthmann, R., McKenzie, J. A., Visscher, P. T., Bittermann, A. G., van Lith, Y., 2006: Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?. Sedimentary Geology, 185, 3-4, 175-183. https://doi.org/10.1016/j.sedgeo.2005.12.022

Vodrážková, S., Vodrážka, R., Munnecke, A., Franců, J., Al-Bassam, K., Halodová, P., Tonarová, P., 2019: Microbially induced wrinkle structures in Middle Devonian siliciclastics from the Prague Basin, Czech Republic. Lethaia, 52, 2, 149-164. https://doi.org/10.1111/let.12280

Weber, B., Steiner, M., Zhu, M.-Y., 2007: Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 1-2, 328-349. https://doi.org/10.1016/j.palaeo.2007.03.021

Wehrmann, A., Gerdes, G., Höfling, R., 2012: Microbial Mats in a Lower Triassic Siliciclastic Playa Environment (Middle Buntsandstein, North Sea). SEPM Special Publications, 101, 177-190. https://doi.org/10.2110/sepmsp.101.177

Wei, X., Fang, L., Cai, P., Huang, Q., Chen, H., Liang, W., Rong, X., 2011: Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environmental Pollution, 159, 5, 1369–1374. https://doi.org/10.1016/j.envpol.2011.01.006

Wetzel, A., 2019: Trackway of a Disabled Seabird. Ichnos, 26, 1, 80-84. https://doi.org/10.1080/10420940.2018.1445627

Wilson, M. A., Taylor, P. D., 2017: Exceptional pyritized cyanobacterial mats encrusting brachiopods shells from the Upper Ordovician (Katian) of the Cincinnati, Ohio, Region. Palaios, 32, 11, 673-677. https://doi.org/10.2110/palo.2017.062

Xiao, S., Chen, Z., Zhou, C., Yuan, X., 2019: Surfing in and on microbial mats: Oxygen-related behavior of a terminal Ediacaran bilaterian animal. Geology, 47, 11, 1054-1058. https://doi.org/10.1130/G46474.1