Tagasi otsingusse
Seppä & Poska, 2004

Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns

Seppä, H., Poska, A.
DOI
DOI10.1016/j.yqres.2003.08.005
Aasta2004
AjakiriQuaternary Research
Köide61
Number1
Leheküljed22-31
Tüüpartikkel ajakirjas
Eesti autor
Keelinglise
Id21405

Abstrakt

We reconstructed annual mean temperature (T ann) trends from three radiocarbon-dated Holocene pollen stratigraphies from lake sediments in Estonia, northern Europe. The reconstructions were carried out using a North-European pollen-climate calibration model based on weighted averaging partial least-squares regression. The cross-validated prediction error of the model is 0.89°C and the coefficient of determination between observed modern T ann values and those predicted by the model is 0.88. In the reconstruction, the Holocene thermal maximum (HTM) is distinguishable at 8000–4500 cal yr B.P. with the expansion of thermophilous tree species and T ann on average 2.5°C higher than at present. The pollen-stratigraphical data reflect progressively warmer and drier summers during the HTM. Analogously with the modern decadal-scale climatic variability in North Europe, we interpret this as an indication of increasing climatic continentality due to the intensification of anticyclonic circulation and meridional air flow. Post-HTM cooling started abruptly at around 4500 cal yr B.P. All three reconstructions show a transient (ca. 300 years) cooling of 1.5–2.0°C at 8600–8000 cal yr B.P. We tentatively correlate this cold event with the North-Atlantic “8.2 ka event” at 8400–8000 cal yr B.P. Provided that the 8.2 ka event was caused by freshening of the North-Atlantic surface water, our data provide evidence of the climatic and vegetational responsiveness of the boundary of the temperate and boreal zones to the weakening of the North-Atlantic thermohaline circulation and the zonal energy transport over Europe. No other cold events of comparable magnitude are indicated during the last 8000 years.

KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
Leheküljel leiduvad materjalid on enamasti kasutamiseks CC BY-SA litsensi alusel, kui pole teisiti määratud.
Portaal on osaks teadustaristust ning infosüsteemist SARV, majutab TalTech.
Open Book ikooni autor Icons8.