Eesti maapõue teavikute register

Veebirakendus valmib 2020. a lõpuks, seni saab kasutada portaali osalist funktsionaalsust.


Infot Eesti geoloogia ja maavarade kohta leiab inglisekeelsest raamatust Raukas & Teedumäe (eds), 1997: Geology and Mineral Resources of Estonia

Kirjanduse otsing ...

Lihtpäring otsib infot kõigilt kirjanduse andmeväljadelt: autor, aasta, pealkiri, ajakirja nimi, kogumik, abstrakt, märksõnad, doi jne.

(1) otsida saab ühe või mitme sõna järgi, tulemustes kuvatakse kirjed, kus vähemalt üks neist on olemas (nt Kaljo Kivimägi);
(2) kui lisad märksõna ette "+" märgi, siis otsitakse vaid kirjeid, kus see märksõna sisaldub (nt +Kaljo +Kivimägi);
(3) märksõna välistamiseks kasuta "-" märki (nt -Kaljo +Kivimägi);
(4) pimeotsingu tähiseks on * (nt litostrat*);
(5) kindla fraasi otsinguks ümbritse see jutumärkidega (nt "tartu riikliku ülikooli");
(6) kombineeri eelnevaid võimalusi (nt +"estonian journal of earth sciences" +Kaljo +year:[2010 TO *] annab tulemuseks kõik Dimitri Kaljo artiklid ajakirjas EJES);

NB! Otsingutulemuste hulgas kuvatakse vaikimisi vaid kontrollitud kirjeid, mis on otseselt seotud Eestiga. Näita kõiki publikatsioone.

Detailne päringuvorm valmib 2020. a teises pooles. Andmete sisestamine ja märksõnadega varustamine kestab 2020. a lõpuni ning seda finantseerib KIKi projekt "Eesti maapõue trükiste andmebaas".

Virtuaalne kirjanduse kogumik

EPz stable isotope literature

Koostas(id): Hints, O., Ainsaar, L., Lepland, A., Meidla, T., Männik, P., 2019

Süsiniku, hapniku, väävli jt kivimites laialt levinud elementide stabiilsed isotoobid aitavad geoloogidel mõista aineringes ja paleokeskkonnas toimunud muutusi ning rööbistada läbilõikeid. Eesti aluspõhja Vanaaegkonna kivimite stabiilsete isotoopide uuringud on pälvinud rahvusvaheliselt suurt tähelepanu kuna siinne "Maa ajaloo arhiiv" on unikaalselt hästi säilinud ning sisaldab palju informatsiooni planeedi arenguloo kohta perioodil u 415-550 mln a tagasi.

Käesolev kirjanduse kogumik koondab kõik Eesti autorite poolt ning Eesti materjali baasil avaldatud teadusartiklid ning valiku mujal maailmas samas valdkonnas tehtud töid. Kogumik on pidevas täienemises, kuna igal aastal ilmub hulgaliselt uusi artikleid.


Kogumiku kirjandus (74)

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J., Tinn, O., 2010: Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 3-4, 189-201. https://doi.org/10.1016/j.palaeo.2010.01.003

Ainsaar, L., Meidla, T., Hints, O., 2019: Carbon isotopic compostion of Ordovician carbonates in Baltoscandia: shallow marine facies shifting the δ13Ccarb values in different ways. In: Obut, O.T., Sennikov, N.V., Kipriyanova, T.P. (ed.). 13th International Symposium on the Ordovician System: Contributions of International Symposium. Novosibirsk, Russia (July 19-22, 2019). Publishing House of SB RAS, Novosibirsk, p. 7-8.

Ainsaar, L., Meidla, T., Martma, T., 1999: Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geological Magazine, 136, 1, 49-62. https://doi.org/10.1017/S001675689900223X

Ainsaar, L., Meidla, T., Martma, T., 2004: The Middle Caradoc Facies and Faunal Turnover in the Late Ordovician Baltoscandian palaeobasin. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 2-4, 119-133. https://doi.org/10.1016/j.palaeo.2004.02.046

Ainsaar, L., Meidla, T., Martma, T., Tinn, O., 2001: Upper Ordovician stable isotope correlation across the facies belts in the East Baltic. In: Harper, D. A. T., Stouge, S. (ed.). WOGOGOB-2001. Abstracts, Copenhagen, p. 5-6.

Ainsaar, L., Meidla, T., Tinn, O., 2004: Middle and Upper Ordovician stable isotope stratigraphy across the facies belts in the East Baltic. In: Hints, O., Ainsaar, L. (ed.). WOGOGOB-2004. Conference Materials. Abstracts and Field Guidebook. Tartu University Press, Tartu, p. 11-12.

Ainsaar, L., Truumees, J. & Meidla, T., 2015: The position of the Ordovician-Silurian boundary in Estonia tested by high-resolution δ¹³C chemostratigraphic correlation. Chemostratigraphy. Concepts, Techniques and Applications. Ed: Ramkumar Mu. Elsevier, p. 395-412. https://doi.org/10.1016/B978-0-12-419968-2.00015-7

Ainsaar, L., Truumees, J., Meidla, T., 2011: Carbon isotope chemostratigraphy of the Ordovician/Silurian boundary beds in central Estonia: new data from drillcores in the Pandivere area. In: Lukševičs, E., Stinkulis, G. & Vasilkova, J. (ed.). The Eighth Baltic Stratigraphical Conference. Abstracts. University of Latvia, Riga, p. 10-10.

Bauert, H., Ainsaar, L., Põldsaar, K., Sepp, S., 2014: δ13C chemostratigraphy of the Middle and Upper Ordovician succession in the Tartu-453 drillcore, southern Estonia, and the significance of the HICE. Estonian Journal of Earth Sciences, 63, 4, 195-200. https://doi.org/10.3176/earth.2014.18

Bauert, H., Hints, O., Bauert, G., Nõlvak, J., Ainsaar, L., Martma, T., 2017: The Guttenberg carbon isotope excursion (GICE; Ordovician) in Estonia. In: Żylińska, A. (ed.). 10th Baltic Stratigraphical Conference. Checiny 12-14 September 2017. Abstracts and Field Guide. University of Warsaw, Warszawa, p. 13-14.

Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C., Dronov, A., 2009: The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42, p. 97-107. https://doi.org/10.1111/j.1502-3931.2008.00136.x

Bergström, S. M., Schmitz, B., Liu, H. P., Terfelt, F., McKay, R. M., 2018: High-resolution δ13Corg chemostratigraphy links the Decorah impact structure and Winneshiek Konservat-Lagerstätte to the Darriwilian (Middle Ordovician) global peak influx of meteorites. Lethaia, 51, p. 504-512. https://doi.org/10.1111/let.12269

Bergström, S. M., Schmitz, B., Terfelt, F., Eriksson, M. E., Ahlberg, P., 2019: The δ13C chemostratigraphy of Ordovician global stage stratotypes: geochemical data from the Floian and Sandbian GSSPs in Sweden. GFF, 1-10. https://doi.org/10.1080/11035897.2019.1631883

Bondar, E., Bityukov, M., Palu, V., Kattai, V., 1996: Carbon isotope composition in the Early Palaeozoic crude oil, natural bitumens and kerogeneous rocks of the Baltic region. Oil Shale, 13, 3, 171-183.

Bowman, C. N., Young, S. A., Kaljo, D., Eriksson, M. E., Them, T. R., Hints, O., Martma, T., Owens, J. D., 2019: Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology, 47, 1, 968-972. https://doi.org/10.1130/G46571.1

Bowman, C., Young, S., Kaljo, D., Eriksson, M., Them, T., Martma, T., Hints, O., Owens, J., 2018: Thallium Isotopic Evidence for Widespread Oceanic Anoxia Associated with the Late Silurian Lau Extinction Event. Goldschmidt Abstracts: Goldschmidt 2018, Boston, 12-17 August 2018. Geochemical Society and the European Association of Geochemistry, p. 1-1.

Brand, U., Bitner, M.A., Logan, A., Azmy, K., Crippa, G., Angiolini, L., Colin, P., Griesshaber, E., Harper, E.M., Taddei, Ruggiero, E., Häussermann, V., 2019: Brachiopod-based oxygen-isotope thermometer: update and review. Rivista Italiana di Paleontologia e Stratigrafia, 125, 3, 775-787. https://doi.org/10.13130/2039-4942/12226

Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T., Nõlvak, J., 2003: High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin, 115, 1, 89-104. https://doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2

Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. F. G., Meidla, T., Hints, L., Anderson, T. F., 1994: Bathymetric and isotopic evidence for a shortlived Late Ordovician glaciation in a greenhouse period. Geology, 22, 4, 295-298. https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2

Brenchley, P. J., Marshall, J. D., Hints, L., Nõlvak, J., 1997: New isotopic data solving an old biostratigraphic problem: the age of the upper Ordovician brachiopod Holorhynchus giganteus. Journal of the Geological Society, 154, 335-342. https://doi.org/10.1144/gsjgs.154.2.0335

Cramer, B. D., Loydell, D. K., Samtleben, C., Munnecke, A., Kaljo, D., Mannik, P., Martma, T., Jeppsson, L., Kleffner, M. A., Barrick, J. E., Johnson, C. A., Emsbo, P., Joachimski, M. M., Bickert, T., Saltzman, M. R., 2010: Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (<500 k.y.) integrated conodont, graptolite, and carbon isotope ( 13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?. Geological Society of America Bulletin, 122, 9-10, 1700-1716. https://doi.org/https://doi.org/10.1130/B26602.1

Ebbestad, J. O. R., Högström, A. E. S., Frisk, Ǻ. M., Martma, T., Kaljo, D., Kröger, B., Pärnaste, H., 2015: Terminal Ordovician stratigraphy of the Siljan district, Sweden. GFF, 137, 1, 36-56. https://doi.org/10.1080/11035897.2014.945620

Edwards, C. T. & Saltzman, M. R., 2016: Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 102-117. https://doi.org/10.1016/j.palaeo.2015.08.005

Edwards, C. T., Saltzman, M. R., Royer, D. L., Fike, D. A., 2017: Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience, 10, 12, 925-929. https://doi.org/10.1038/s41561-017-0006-3

Gouldey, J.C., Saltzman, M.R., Young, S.A., Kaljo, D., 2010: Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): Implications for tectonics and weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035

Hammarlund, E. U., Loydell, D. K., Nielsen, A. T., Schovsbo, N. H., 2019: Early Silurian δ13Corg excursions in the foreland basin of Baltica, both familiar and surprising. Palaeogeography, Palaeoclimatology, Palaeoecology, 526, 126-135. https://doi.org/10.1016/j.palaeo.2019.03.035

Henderson, M.A., Serra, F., Feltes, N.A., Albanesi, G.L., Kah, L.C., 2018: Paired isotope records of carbonate and organic matter from the Middle Ordovician of Argentina: Intrabasinal variation and effects of the marine chemocline. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 107-130. https://doi.org/10.1016/j.palaeo.2017.10.018

Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J., Pärnaste, H., 2010: Hirnantian (latest Ordovician) bio- and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences, 59, 1, 1-24. https://doi.org/10.3176/earth.2010.1.01

Hints, L., Oraspõld, A., Kaljo, D., 2000: Stratotype of the Porkuni Stage with comments on the Röa Member (uppermost Ordovician, Estonia). Proceedings of the Estonian Academy of Sciences. Geology, 49, 3, 177-199.

Hints, O., Kaljo, D., Kaptein, K., Martma, T. & Munnecke, A., 2017: Variations in carbon isotope composition of microfossils and bulk organic matter from the Middle Ordovician through Wenlock in Estonia. , 36-37.

Hints, O., Kaljo, D., Lepland, A., Liiv, M., Martma, T., Ainsaar, L., 2019: Paired organic and carbonate carbon isotope records through the Middle and Upper Ordovician of Estonia. In: Obut, O. T., Sennikov, N. V., Kipriyanova, T. P. (ed.). 13th International Symposium on the Ordovician System: Contributions of International Symposium. Novosibirsk, Russia (July 19-22, 2019). Publishing House of SB RAS, Novosibirsk, p. 75-77.

Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y., Viira, V., 2014: New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF, 136, 1, 100-104. https://doi.org/10.1080/11035897.2013.873989

Kaljo, D. & Martma, T., 2006: Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF, 128, 2, 123-129. https://doi.org/10.1080/11035890601282123

Kaljo, D. & Martma, T., 2011: Carbon isotope trend in the Mirny Creek area, NE Russia, its specific features and possible implications of the uppermost Ordovician stratigraphy. In: Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D. (ed.). Ordovician of the World. Cuadernos del Museo GeoMinero, 14. Instituto Geologico y Minero de Espana, Madrid, p. 267-273.

Kaljo, D., Einasto, R., Martma, T., Märss, T., Nestor, V., Viira, V., 2015: A bio-chemostratigraphical test of the synchroneity of biozones in the upper Silurian of Estonia and Latvia with some implications for practical stratigraphy. Estonian Journal of Earth Sciences, 64, 4, 267-283. https://doi.org/10.3176/earth.2015.33

Kaljo, D., Grytsenko, V., Martma, T., Mõtus, M.-A., 2007: Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences, 56, 4, 205-220. https://doi.org/10.3176/earth.2008.1.03

Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T., Nõlvak, J., 2011: Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geological Journal, 46, 5, 464-477. https://doi.org/10.1002/gj.1301

Kaljo, D., Hints, L., Hints, O., Martma, T., Nõlvak, J., 1999: Carbon isotope excursions and coeval biotic-environmental changes in the late Caradoc and Ashgill of Estonia. Acta Universitatis Carolinae. Geologica, 43, 1/2, 507-510.

Kaljo, D., Hints, L., Männik, P., Nõlvak, J., 2008: The succesion of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes. Estonian Journal of Earth Sciences, 57, 4, 197-218. https://doi.org/10.3176/earth.2008.4.01

Kaljo, D., Hints, L., Martma, T., Nõlvak, J., 1998: Refinements of carbon isotope stratigraphy in the latest Ordovician of Estonia. Goldschmidt Conference Toulouse 1998. Mineralogical Magazine, 62A, p. 740-741. https://doi.org/10.1180/minmag.1998.62A.2.57

Kaljo, D., Hints, L., Martma, T., Nõlvak, J., 2001: Carbon isotope stratigraphy in the latest Ordovician of Estonia. Chemical Geology, 175, 49-59. https://doi.org/10.1016/S0009-2541(00)00363-6

Kaljo, D., Hints, L., Martma, T., Nõlvak, J., 2017: A multiproxy study of the Puhmu core section (Estonia, Upper Ordovician): consequences for stratigraphy and environmental interpretation. Estonian Journal of Earth Sciences, 66, 2, 77-92. https://doi.org/10.3176/earth.2017.08

Kaljo, D., Hints, L., Martma, T., Nõlvak, J., Oraspõld, A., 2004: Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 2-4, 165-185. https://doi.org/10.1016/j.palaeo.2004.02.044

Kaljo, D., Kiipli, T., Martma, T., 1997: Carbon isotope event markers through the Wenlock-Pridoli sequence in Ohesaare (Estonia) and Priekule (Latvia). Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 1-4, 211-224. https://doi.org/10.1016/S0031-0182(97)00065-5

Kaljo, D., Kiipli, T., Martma, T., 1998: Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. In: Landing, Ed., Johnson, M. E. (ed.). Silurian cycles - linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. Landing, E. & Johnson, M. E. (Eds). New York State Museum Bulletin, 491, p. 297-312.

Kaljo, D., Männik, P., Martma, T., Nõlvak, J., 2012: More about the Ordovician-Silurian transition beds at Mirny Creek, Omulev Mountains, NE Russia: carbon isotopes and conodonts. Estonian Journal of Earth Sciences, 61, 4, 277-294. https://doi.org/10.3176/earth.2012.4.07

Kaljo, D., Martma, T., 2000: Carbon isotopic composition of Llandovery rocks (East Baltic Silurian) with environmental interpretation. Proceedings of the Estonian Academy of Sciences. Geology, 49, 4, 267-283.

Kaljo, D., Martma, T., Grytsenko, V., Brazauskas, A., Kaminskas, D., 2012: Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area. Estonian Journal of Earth Sciences, 61, 3, 162-180. https://doi.org/10.3176/earth.2012.3.03

Kaljo, D., Martma, T., Männik, P., Viira, V., 1999: Silurian oceanic episodes and carbon isotope shifts: a preliminary Baltic comparison. In: Lukševičs, E., Stinkulis, G., Kalnina, L. (ed.). The Fourth Baltic Stratigraphical Conference. Abstracts. University of Latvia, Riga, p. 40-42.

Kaljo, D., Martma, T., Männik, P., Viira, V., 2003: Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Societe Geologique de France, 174, 1, 59-66. https://doi.org/10.2113/174.1.59

Kaljo, D., Martma, T., Saadre, T., 2007: Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 1-2, 138-155. https://doi.org/10.1016/j.palaeo.2006.02.020

Kozik, N. P., Young, S. A., Bowman, C. N., Saltzman, M. R., Them, T. R., 2019: Middle–Upper Ordovician (Darriwilian–Sandbian) paired carbon and sulfur isotope stratigraphy from the Appalachian Basin, USA: Implications for dynamic redox conditions spanning the peak of the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 520, 188-202. https://doi.org/10.1016/j.palaeo.2019.01.032

Krause, A. J., Mills, B. J. W., Zhang, S., Planavsky, N. J., Lenton, T. M., Poulton, S. W., 2018: Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 9, 1, . https://doi.org/10.1038/s41467-018-06383-y

Li, B., Zhang, D., Pang, X., Gao, P., Zhu, D., Guo, K., Zheng, T., 2018: Paired δ13Ccarb and δ13Corg records of the Ordovician on the Yangtze platform, South China. Australian Journal of Earth Sciences, 65. Informa UK Limited, p. 809-822. https://doi.org/10.1080/08120099.2018.1487468

Lindskog, A., Eriksson, M., Bergström, S., Young, S., 2019: Lower-Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlation and palaeoenvironmental development. Lethaia, 52. Wiley, p. 204-219. https://doi.org/10.1111/let.12307

Lindskog, A., Young, S. A., 2019: Dating of sedimentary rock intervals using visual comparison of carbon isotope records: a comment on the recent paper by Bergström et al. concerning the age of the Winneshiek Shale. Lethaia, 52, p. 299-303. https://doi.org/10.1111/let.12316

Martma, T., 2003: Carbon and oxygen isotopes. Estonian Geological Sections, 5, 28-31.

Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D., Musteikis, P., 2005: The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly, 49, 2, 223-234.

Martma, T., Kaljo, D., 2007: Ordovician carbon isotope stratigraphy - some comments on the current state, mainly from the Baltic viewpoint. WOGOGOB 2007. Field guide and Abstracts. Eds: Ebbestad, Wickström & Högström, p. 97-98.

Meidla, T., Ainsaar, L., Hints, L., Hints, O., Martma, T., Nõlvak, J., 1999: The mid-Caradocian biotic and isotopic event in the Ordovician of the East Baltic. Acta Universitatis Carolinae. Geologica, 43, 1/2, 503-506.

Melchin, M. J., Holmden, C., 2006: Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: Implications for global correlation and sea-level change. GFF, 128, 2, 173-180. https://doi.org/10.1080/11035890601282173

Radzevičius, S., Spiridonov, A., Brazauskas, A., Dankina, D., Rimkus, A., Bičkauskas, G., Kaminskas, D., Meidla, T., Ainsaar, L., 2016: Integrated stratigraphy, conodont turnover and palaeoenvironments of the upper Wenlock and Ludlow in the shallow marine succession of the Vilkaviškis-134 core (Lithuania). Newsletters on Stratigraphy, 49, 2, 321-336. https://doi.org/10.1127/nos/2016/0074

Radzevičius, S., Spiridonov, A., Brazauskas, A., Norkus, A., Ainsaar, L., Meidla, T., 2014: Upper Wenlock δ13C chemostratigraphy, conodont biostratigraphy and palaeoecological dynamics in the Ledai-179 drill core (Eastern Lithuania). Estonian Journal of Earth Sciences, 63, 4, 293-299. https://doi.org/10.3176/earth.2014.33

Radzevičius, S., Spiridonov, A., Rimkus, A., Meidla, T., Ainsaar, L., Brazauskas, A., Dankina, D., 2014: Integrated δ13C isotope and graptolite stratigraphy of upper Wenlock and lower Ludlow of the Vilkaviškis-134 core, Lithuania. 9th Baltic Stratigraphical Conference, 8-9 September 2014 Vilnius, Lithuania. Geologija, 56. Lietuvos mokslu akademija, Vilnius, p. 32-33.

Richardson, J. A., Keating, C., Lepland, A., Hints, O., Bradley, A. S., Fike, D. A., 2019: Silurian records of carbon and sulfur cycling from Estonia: The importance of depositional environment on isotopic trends. Earth and Planetary Science Letters, 512, 71-82. https://doi.org/10.1016/j.epsl.2019.01.055

Rose, C. V., Fischer, W. W., Finnegan, S., Fike, D. A., 2019: Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden. Geochimica et Cosmochimica Acta, 246, 299-316. https://doi.org/10.1016/j.gca.2018.11.030

Shields, G. A., Carden, G. A., Veizer, J., Meidla, T., Rong, J., Li, R., 2003: Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 67, 11, 2005-2025. https://doi.org/10.1016/S0016-7037(02)01116-X

Spiridonov, A., Stankevič, R., Gečas, T., Šilinskas, T., Brazauskas, A., Meidla, T., Ainsaar, L., Musteikis, P., Radzevičius, S., 2017: Integrated record of Ludlow (Upper Silurian) oceanic geobioevents – Coordination of changes in conodont, and brachiopod faunas, and stable isotopes. Gondwana Research, 51, 272-288. https://doi.org/10.1016/j.gr.2017.08.006

Truuver, K., Meidla, T., Ainsaar, L., Bergström, J., Tinn, O., 2012: Stratigraphy of the Ordovician–Silurian boundary interval in Östergötland, Sweden, based on ostracod distribution and stable carbon isotopic data. GFF, 134, 4, 295 - 308. https://doi.org/10.1080/11035897.2012.762550

Underwood, C. J., Crowley, S. F., Marshall, J. D., Brenchley, P. J., 1997: High-Resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob's Linn, Scotland) and its global correlation. Journal of the Geological Society, 154, 4, 709-718. https://doi.org/10.1144/gsjgs.154.4.0709

Waid, C., Cramer, B., 2017: Global chronostratigraphic correlation of the Llandovery Series (Silurian System) in Iowa, USA, using high-resolution carbon isotope (δ13Ccarb) chemostratigraphy and brachiopod and conodont biostratigraphy. Bulletin of Geosciences, 92, 3, 373-390. https://doi.org/10.3140/bull.geosci.1657

Walasek, N., Loydell, D.K., Fryda, J., Männik, P., Loveridge, R.F., 2018: Integrated graptolite-conodont biostratigraphy and organic carbon chemostratigraphy of the Llandovery of Kallholn quarry, Dalarna, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 508, 1-16. https://doi.org/10.1016/j.palaeo.2018.08.003

Young, S., Saltzman, M., Ausich, W., Desrochers, A., Kaljo, D., 2010: Did changes in atmospheric CO2 coincide with latest Ordovician glacial–interglacial cycles?. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, p. 376-388. https://doi.org/10.1016/j.palaeo.2010.02.033

Zhang, Y., Munnecke, A., 2016: Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 458. Elsevier BV, p. 154-175. https://doi.org/10.1016/j.palaeo.2015.09.001