Eesti maapõue teavikute register

Veebirakendus valmib 2020. a lõpuks, seni saab kasutada portaali osalist funktsionaalsust.


Infot Eesti geoloogia ja maavarade kohta leiab inglisekeelsest raamatust Raukas & Teedumäe (eds), 1997: Geology and Mineral Resources of Estonia

Kirjanduse otsing ...

Lihtpäring otsib infot kõigilt kirjanduse andmeväljadelt: autor, aasta, pealkiri, ajakirja nimi, kogumik, abstrakt, märksõnad, doi jne.

(1) otsida saab ühe või mitme sõna järgi, tulemustes kuvatakse kirjed, kus vähemalt üks neist on olemas (nt Kaljo Kivimägi);
(2) kui lisad märksõna ette "+" märgi, siis otsitakse vaid kirjeid, kus see märksõna sisaldub (nt +Kaljo +Kivimägi);
(3) märksõna välistamiseks kasuta "-" märki (nt -Kaljo +Kivimägi);
(4) pimeotsingu tähiseks on * (nt litostrat*);
(5) kindla fraasi otsinguks ümbritse see jutumärkidega (nt "tartu riikliku ülikooli");
(6) kombineeri eelnevaid võimalusi (nt +"estonian journal of earth sciences" +Kaljo +year:[2010 TO *] annab tulemuseks kõik Dimitri Kaljo artiklid ajakirjas EJES);

NB! Otsingutulemuste hulgas kuvatakse vaikimisi vaid kontrollitud kirjeid, mis on otseselt seotud Eestiga. Näita kõiki publikatsioone.

Detailne päringuvorm valmib 2020. a teises pooles. Andmete sisestamine ja märksõnadega varustamine kestab 2020. a lõpuni ning seda finantseerib KIKi projekt "Eesti maapõue trükiste andmebaas".

Virtuaalne kirjanduse kogumik

Tomograafia paleontoloogias

Koostas(id): , 2019

Kogumiku kirjandus (43)

Baniak, G. M., La Croix, A. D., Polo, C. A., Playter, T. L., Pemberton, S. G., Gingras, M. K., 2014: Associating X-Ray Microtomography with Permeability Contrasts in Bioturbated Media. Ichnos, 21, 4, 234-250. https://doi.org/10.1080/10420940.2014.958224

Baucon, A., Bednarz, M., Dufour, S., Felletti, F., Malgesini, G., De Carvalho, C. N., Niklas, K. J., Wehrmann, A., Batstone, R., Bernardini, F., Briguglio, A., Cabella, R., Cavalazzi, B., Ferretti, A., Zanzerl, H., McIlroy, D., 2019: Ethology of the trace fossil Chondrites: form, function and environment. Earth-Science Reviews, 102989. https://doi.org/10.1016/j.earscirev.2019.102989

Beuck, L., Vertino, A., Stepina, E., Karolczak, M., Pfannkuche, O., 2007: Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies, 53, 2, 157– 176. https://doi.org/10.1007/s10347-006-0094-9

Beuck, L., Wisshak, M., Munnecke, A., Freiwald, A., 2008: A Giant Boring in a Silurian Stromatoporoid Analysed by Computer Tomography. Acta Palaeontologica Polonica, 53, 1, 149-160. https://doi.org/10.4202/app.2008.0111

Boisvert, C., 2009: The origin of tertrapod limbs and girdles: fossil and developmental evidence. Journal of Vertebrate Paleontology, 29, 3, .

Boisvert, C. A., Ahlberg, P. E., Mark-Kurik, E., 2007: The pectoral fin of Panderichthys rhombolepis: 3D structure and life-orientation. In: Blom, H., Brazeau, M. D. (ed.). 40th Anniversary Symposium on Early Vertebrates/Lower Vertebrates. Uppsala, Sweden, August 13–16, 200. Ichthyolith Issues, Special Publication, 10. Uppsala University, Uppsala, p. 20.

Boisvert, C. A., Mark-Kurik, E., Ahlberg, P. E., 2008: The pectoral fin of Panderichthys and the origin of digits. Nature, 456, 636-638. https://doi.org/10.1038/nature07339

Chen, D., Blom, H., Sanchez, S., Tafforeau, P., Märss, T., Ahlberg, P. E., 2017: Development of cyclic shedding teeth from semi-shedding teeth: the inner dental arcade of the stem osteichthyan Lophosteus. Royal Society Open Science, 4, 5, 1-21. https://doi.org/10.1098/rsos.161084

Claussen, A. L., Munnecke, A., Wilson, M. A., Oswald, I., 2019: The oldest deep-boring bivalves? Evidence from the Silurian of Gotland (Sweden). Facies, 65, 3, . https://doi.org/10.1007/s10347-019-0570-7

Dorador, J., Rodríguez-Tovar, F. J., Titschack, J., 2020: Exploring computed tomography in ichnological analysis of cores from modern marine sediments. Scientific Reports, 10, 1, 506-514. https://doi.org/10.1038/s41598-019-57028-z

Färber, C., Titschack, J., Schönberg, C. H. L., Ehring, K., Boos, K., Baum, D., Illerhaus, B., Asgaard, U., Bromley, R. G., Freiwald, A., Wisshak, M., 2016: Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography. Biogeosciences, 13, 11, 3461-3474. https://doi.org/10.5194/bg-13-3461-2016

Fedorov, P. V., 2018: Lower Ordovician Siphonia cylindrica Eichwald, 1840 from north-western Russia: a pseudo-sponge and a natural ‘recorder’ of geological history. Bulletin of Geosciences, 93, 4, 463-467. https://doi.org/10.3140/bull.geosci.1691

Fedorov, P. V., Koromyslova, A. V., 2019: New findings of the genus Revalotrypa, the oldest bryozoan genus of Baltoscandia, in north-western Russia. Carnets de Géologie, 19, 19, 199-209. https://doi.org/ 10.4267/2042/70296

Fu, S., Werner, F., Brossmann, J., 1994: Computed Tomography: Application in Studying Biogenic Structures in Sediment Cores. Palaios, 9, 1, 116-119. https://doi.org/10.2307/3515084

Giles, S., Friedman, M., Brazeau, M. D., 2015: Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature, 520, 7545, 82-85. https://doi.org/10.1038/nature14065

Gillet, E., Lefebvre, B., Gardien, V., Steimetz, E., Durlet, C., Marin, F., 2019: Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Zoosymposia, 15, 1, 44-70. https://doi.org/10.11646/zoosymposia.15.1.7

Haga, T., Kurihara, Y., Kase, T., 2010: Reinterpretation of the Miocene sea-snake egg Moniopterus japonicus as a boring of rockboring bivalve Lithophaga (Mytilidae: Mollusca). Journal of Paleontology, 84, 5, 848-857. https://doi.org/10.1666/09-126.1

Hansen, B. B., Milàn, J., Clemmensen, L. B., Adolfssen, J. S., Estrup, E. J., Klein, N., Mateus, O., Wings, O., 2016: Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications, 434, 1, 49-69. https://doi.org/10.1144/SP434.12

Hebbeln, D., Samankassou, E., 2015: Where did ancient carbonate mounds grow — In bathyal depths or in shallow shelf waters?. Earth-Science Reviews, 145, 56-65. https://doi.org/10.1016/j.earscirev.2015.03.001

Heřmanová, Z., Bruthansová, J., Holcová, K., Mikuláš, R., Kočová Veselská, M., Kočí, T., Dudák, T., Vohník, M., 2020: Benefits and limits of x-ray. Palaeontologia Electronica, . https://doi.org/10.26879/1048

Hipsley, C. A., Aguilar, R., Black, J. R., Hocknull, S. A., 2020: High throughput micro-CT scanning of small fossils: preparation, packing, parameters and post-processing. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.01.22.911875

Jacobsen, A., Lauridsen, H., Fiirgaard, B., Boel, L., Hansen, K., 2015: Healed or non-healed? Computed tomography (CT) visualisation of morphology of bite trace ichnotaxa on a dinosaur bone. Annales Societatis Geologorum Poloniae, 85, 3, 457–464. https://doi.org/10.14241/asgp.2015.022

Jerve, A., Qu, Q., Sanchez, S., Blom, H., Ahlberg, P. E., 2016: Three-dimensional paleohistology of the scale and median fin spine of Lophosteus superbus (Pander 1856). PeerJ, e2521, 1-29. https://doi.org/10.7717/peerj.2521

Kazantseva, E. S., Rozhnov, S. V., 2018: From Regeneration to Coloniality: Multiple Buds in the Solitary Coral Bothrophyllum conicum Trautschold, 1879 (Rugosa) in the Carboniferous of the Moscow Basin. Paleontological Journal, 52, 14, 1710-1722. https://doi.org/10.1134/S0031030118140095

Knaust, D., Dorador, J., Rodríguez-Tovar, F. J., 2020: Burrowed matrix powering dual porosity systems – A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Marine and Petroleum Geology, 113, 104158. https://doi.org/10.1016/j.marpetgeo.2019.104158

Konhauser, K. O., Gingras, M. K., 2011: Are animal burrows a major sedimentary sink for metals?. Ichnos, 18, 3, 144-146. https://doi.org/10.1080/10420940.2011.606517

Koromyslova, A. V., Pakhnevich, A. V., Fedorov, P. V., 2019: Tobolocella levinae n. gen., n. sp., a cheilostome bryozoan from the late Maastrichtian of northern Kazakhstan: scanning electron microscope and micro-CT study. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 294, 1, 91-101. https://doi.org/10.1127/njgpa/2019/0848

Kraft, P., Bruthansová, J., Mikuláš, R., 2020: Feeding traces related to shells from the Prague Basin, Czech Republic (Tremadocian to early Darriwilian, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 109399. https://doi.org/10.1016/j.palaeo.2019.109399

Mayoral, E., Santos, A., Vintaned, J. G., Wisshak, M., Neumann, C., Uchman, A., Nel, A., 2020: Bivalve bioerosion in Cretaceous-Neogene amber around the globe, with implications for the ichnogenera Teredolites and Apectoichnus. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109410. https://doi.org/10.1016/j.palaeo.2019.109410

Nohl, T., Munnecke, A., 2019: Reconstructing time and diagenesis of limestone-marl alternations from the selective compaction of colonies of the tabulate coral Halysites. Bulletin of Geosciences. https://doi.org/10.3140/bull.geosci.175

Pakhnevich, A. V., 2010: Study of fossil and recent brachiopods, using a skyscan 1172 X-ray microtomograph. Paleontological Journal, 44, 9, 1217– 1230. https://doi.org/10.1134/S0031030110090066

Patterson, M. A., Webster, J. M., Hutchings, P., Braga, J., Humblet, M., Yokoyama, Y., 2020: Bioerosion traces in the Great Barrier Reef over the past 10 to 30 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 542, 109503. https://doi.org/10.1016/j.palaeo.2019.109503

Pennafirme, S., Machado, A. S., Machado, A. C., Lopes, R. T., Lima, I. C., Crapez, M. A., 2019: Monitoring bioturbation by a small marine polychaete using microcomputed tomography. Micron, 121, 77-83. https://doi.org/10.1016/j.micron.2019.03.004

Qu, Q. M., Blom, H., Sanchez, S., Ahlberg, P., 2015: Three-Dimensional Virtual Histology of Silurian Osteostracan Scales Revealed by Synchrotron Radiation Microtomography. Journal of Morphology, 276, 8, 873-888. https://doi.org/10.1002/jmor.20386

Qvarnström, M., Niedźwiedzki, G., Tafforeau, P., Žigaite, Ž., Ahlberg, P. E., 2017: Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data. Scientific Reports, 7. Springer Nature. https://doi.org/10.1038/s41598-017-02893-9

Rodríguez-Tovar, F.J., Dorador, J., Mena, A., Hernández-Molina, F.J., 2018: Lateral variability of ichnofabrics in marine cores: Improving sedimentary basin analysis using Computed Tomography images and high-resolution digital treatment. Marine Geology, 397, 72-78. https://doi.org/10.1016/j.margeo.2017.12.006

Schönberg, C. H. L., Shields, G., 2008: Micro-computed tomography for studies on Entobia: Transparent substrate versus modern technology. In: Wisshak M., Tapanila L. (ed.). Current Developments in Bioerosion. Springer, Berlin Heidelberg, p. 147–164. https://doi.org/10.1007/978-3-540-77598-0_8

Tapanila, L., 2008: The medium is the message: imaging a complex microboring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada. In: Wisshak M., Tapanila L. (ed.). Current Developments in Bioerosion. Springer, Heidelberg, p. 123-145. https://doi.org/10.1007/978-3-540-77598-0_7

Viskova, L. A., Pakhnevich, A. V., 2010: A new boring bryozoan from the Middle Jurassic of the Moscow Region and its micro-CT research. Paleontological Journal, 44, 2, 157-167. https://doi.org/10.1134/S0031030110020073

Wang, W., Muir, L. A., Zhang, M., Zhao, R., Tan, J., Chen, X., 2020: Internal supporting structures of some Late Ordovician graptolites from South China revealed by micro‐CT. Lethaia, . https://doi.org/10.1111/let.12365

Weissberger, E., Coiro, L., Davey, E., 2009: Effects of hypoxia on animal burrow construction and consequent effects on sediment redox profiles. Journal of Experimental Marine Biology and Ecology, 371, 1, 60-67. https://doi.org/10.1016/j.jembe.2009.01.005

Wisshak, M., 2012: Microbioerosion. In: Knaust, D., Bromley, R. G. (ed.). Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64. Elsevier, Amsterdam, p. 213-243. https://doi.org/10.1016/B978-0-444-53813-0.00008-3

Wisshak, M., Titschak, J., Kahl, W.-A., Girod, P., 2017: Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Fossil Record, 20, 2, 173-199. https://doi.org/10.5194/fr-20-173-2017